De plek van het vleeskuiken in een toekomstig voedselsysteem

Utrecht, Dutch Poultry Centre live event

7 juli 2021, Bram Bos i.s.m. Heleen van Kernebeek

De ecologische footprint van dierlijke productie

- Voederconversie
- Life Cycle Analysis
- Voedsel-systeembenadering

Voederconversie

	kg/kg
Vleeskuiken	1.71
Leghen	1.98
Vleesvarken	2.9
Melkkoe	2.93
Rosé kalf	7.58

* uitgedrukt per kg product (vlees, ei, melk). Data: Feedprint (versie 2020). kg/kg

- Efficiëntie op niveau dier
- Geen keteneffecten

Life Cycle Analysis

Hoeveel kilo CO2 komt vrij voor 1 kilo ... ?

Cijfers per kilogram product zoals je dat koopt in de supermarkt.

- Ecologische footprint/kg
- Verschillende aspecten
- Over de hele keten

Op basis van cijfers van Blonk Consultants

Source: Milieu Centraal · Created with Datawrapper

Life Cycle Analyses (Land use)

Fig. 2. Land use for livestock products, in m² per kg of protein or per average daily intake of each product.

De Vries & De Boer 2010

Life Cycle Analyses (Energy use)

Fig. 4. Energy use for livestock products, in MJ per kg of protein or per average daily intake of each product.

7

Life Cycle Analyses (GWP)

Fig. 6. Global warming potential for livestock products, in CO₂-e per kg of protein or per average daily intake of each product.

De Vries & De Boer 2010

Life Cycle Analyses (AP/EP)

Fig. 7. Acidification potential (AP, in kg SO₂-e) and eutrophication potential (EP, in kg PO_4^{3-} -e) for livestock products, per kg of product.

De Vries & De Boer 2010

Visualisation of a circular food system (from: Van Zanten et al., 2019).

Figure 1 Framework to assess the potential of animals to upcycle available low-opportunity-cost feed into human food; Adapted from van Zanten et al. (2019).

Figure 1. Definition of the livestock systems (pig, laying hen, broiler, dairy cattle & beef cattle) varying in productivity (low, mid, and high), including their inputs (low-opportunity-cost feeds; food waste, food by-products & grass resources) and outputs (animal products; milk, meat & eggs).

14

Figure 4. Animal human digestible protein (HDP) supply, per EU capita per day, under optimal conversion of LCF compared with current animal HDP consumption, and alternative optimisation scenarios of the sensitivity analysis

M:M:E = milk:meat:egg

Van Hal 2020:

"The proposed optimal conversion of available LCF in the EU requires 56 million low-productive pigs, 9.5 million high-productive laying hens, and 30 million low-productive dairy cows, across all EU countries. Compared to current EU livestock numbers, an optimal LCF conversion would, therefore, require 78% less pigs and 98% less laying hens, but 9% more dairy cattle besides a complete abolishment of beef cattle and broilers."

LCF = low-opportunity-cost feeds

Relativeringen

- Voedselsysteembenadering optimaliseert op beschikbaar land en beschikbare grondstoffen die niet concurreren met humaan (feed/food)
- Balans kan anders uitvallen als we bv. ook meewegen:
 - Bijdrage aan biodiversiteit / landschapsbeheer
 - Klimaatimpact
 - N- en P-verliezen
 - Religieuze en culturele verschillen

Kortom

- Als de vraag naar dierlijke eiwitten centraal staat, dan is het vleeskuiken per kg product tamelijk concurrerend met eieren en zuivel (VC; LCA's)
- Als feed/food competitie (om land en grondstoffen) moet worden vermeden, dan valt het vleeskuiken, net als het vleesrund af in de optimalisatie (Voedselsysteembenadering; Van Hal), en blijven er daarnaast erg weinig leghennen over.

Dank voor uw aandacht

Bram Bos, bram.bos@wur.nl

